Spin Equilibria in Iron(II) Hexa-amine Cages

Lisandra L. Martin,^a Karl S. Hagen,^a Andreas Hauser,^a Raymond L. Martin,^b and Alan M. Sargeson^{a*}

Research School of Chemistry, The Australian National University, Canberra, A.C.T., 2601, Australia b Department of Chemistry, Managh University, Clayton, 2169, Vistoria, Australia

^b Department of Chemistry, Monash University, Clayton, 3168, Victoria, Australia

Iron(a) cage complexes [Fe{(1-X, 8-Y)-sar}]²⁺ (X = Y = H, NH₂, or NH₃⁺, or X = Me, Y = H, sar = 3,6,10,13,16,19-hexa-azabicyclo[6.6.6]icosane) show high-spin (${}^{5}T_{2g}$ origin) \rightleftharpoons low-spin (${}^{1}A_{1g}$ origin) equilibria in solution, characterised by measurements of magnetism and visible and ${}^{1}H$ n.m.r. spectra.

The synthesis¹⁻⁴ of a series of first row transition metal ions encapsulated by the hexa-amine ligand 'sar' (Figure 1) offers an unusual opportunity to study their electronic properties in a saturated amine ligand field. Encapsulation of the central metal ion provides a magnetically dilute, co-ordinatively saturated, and kinetically inert environment and, in solution, the electronic properties should be determined by the intramolecular characteristics of the complex.⁴

HN NH NH

Figure 1. Structure of the cage complexes $[M\{(1-X, 8-Y)-sar\}]^{n+}$. $[M(sar)]^{n+} X = Y = H$ $[M\{(NH_3)_2-sar\}]^{(n+2)+} X = Y = NH_3$ $[M\{(NH_2)_2-sar\}]^{n+} X = Y = NH_2$ The temperature dependence of the magnetic susceptibility between 4 and 300 K has been measured^{4,5} for the following polycrystalline complexes where the counter-anion is NO_3^- , Cl^- , ClO_4^- , $CF_3SO_3^-$, $S_2O_6^{2-}$, or $ZnCl_4^{2-}$:

[M(sar)] ⁿ⁺	$M = Cr^{III}, Mn^{III}, Mn^{II}, Fe^{III}, Fe^{III}, Co^{III}, Co^{III}, Ni^{III}, Ni^{III}, Cu^{II}, Zn^{II} (n = 2 \text{ or } 3)$
$[M{(NH_3)_2-sar}]^{n+1}$	$M = V^{III}, Cr^{III}, Mn^{II}, Fe^{II}, Co^{II}, Ni^{II}, Cu^{II}, or Zn^{II} (n = 4 \text{ or } 5).$
$[M{(NH_2)_2-sar}]^{n+1}$	$M = Cr^{III} \text{ or } Fe^{II} (n = 3 \text{ or}$ 2)
$[M{(NH_3)_2-sar-2H^+}]^{4+}$	$M = V^{IV}$

The Fe^{III}, Co^{III}, and Ni^{III} complexes all exhibit low-spin behaviour whereas the Mn^{III} complex is a high-spin system. The M^{II} counterparts $[M(sar)]^{2+}$ and $[M\{(NH_3)_2-sar\}]^{4+}$ are all high-spin except for the deep blue Fe^{II} complex $[Fe\{(NH_2)_2-sar\}]^{2+}$. Surprisingly, this complex is diamagnetic, which implies that the ligand field generated by these saturated macrobicycles is close to that required for the low-spin (t₂⁶) and high-spin (t₂⁴e²) crossover.⁶ This situation has now been confirmed by studying the temperature dependence of the magnetic susceptibility and optical and ¹H n.m.r. spectra of the Fe^{II} cage complexes in solution, where the effects of intermolecular interactions are negligible. The magnetic moments at 20 °C determined by the Evans n.m.r. method⁷ were found to lie between the values expected for

Fable 1. Magnetic moments,	measured a	at 293	K in	solid a	nd solution	states,	for Fe ^{II}	cages
----------------------------	------------	--------	------	---------	-------------	---------	----------------------	-------

Compound	µ _{eff} in solid/ B.M.	µ _{eff} in solution/ B.M.	Solvent
[Fe(sar)](CF ₃ SO ₃) ₂	5.15ª	2.15 ± 0.12 2.55 ± 0.04 2.27	D ₂ O CD ₃ CN DCl ^b
$[Fe\{(NH_3)_2 \cdot sar\}]Br_2Cl_2 \cdot 4H_2O$	5.42	4.23 ± 0.22 4.33	D ₂ O (CD ₃) ₂ NCDO
$[Fe{(NH_2)_2-sar}](CF_3SO_3)_2$ $[Fe{(Me)-sar}](CF_3SO_3)_2$	Diamag. High-spin ^c	2.33 2.22	CD ₃ CN (CD ₃) ₂ NCDO

^a Measured at 230 K. ^b 0.1 \bowtie DCl in D₂O with t-butyl alcohol as reference probe. ^c Sample in solid state appears identical with the high-spin colourless [Fe(sar)](CF₃SO₃)₂ and [Fe{(NH₃)₂-sar}]Br₂Cl₂·4H₂O; *cf.* the deep blue crystal of diamagnetic [Fe{(NH₂)₂-sar}](CF₃SO₃)₂.

Figure 2. Temperature dependence of the spin equilibrium for $[Fe(sar)](CF_3SO_3)_2$ in CD₃CN formulated on the basis of (a) a spin-only value for the $t_2^4e^2$ state (K_{SO}) and (b) a spin-orbit coupled $t_2^4e^2$ state (K_{LS}).

low-spin and high-spin behaviour (Table 1). For the ions, $[Fe(sar)]^{2+}$, $[Fe\{(NH_2)_2\text{-sar}\}]^{2+}$, and $[Fe\{(CH_3)\text{-sar}\}]^{2+}$, χ_M and μ_{eff} vary markedly with temperature (*e.g.* Figure 3), whereas for $[Fe\{(NH_3)_2\text{-sar}\}]^{4+}$ μ_{eff} is essentially temperature-independent. Equilibrium constants for the two states and other equilibrium parameters are deduced from equations (i) and (ii), where μ_{eff}^2 ($t_2^4e^2$) is taken as the spin-only value (24) (Figure 2).

The spin states can be considered as derived from the singlet ${}^{1}A_{1g}$ and quintet ${}^{5}T_{2g}$ ground states of octahedral symmetry, but the structural data available⁸[†] and the symmetry enforced by the ligand clearly require an effective symmetry less than $O_{\rm h}$ and almost certainly D_{3} (on average) in solution. Given this constraint, it is reasonable to describe the singlet ground state as ${}^{1}A_{1}$ and the quintet ground state as ${}^{5}A_{1}$.

$$K_{\rm eq} = [t_2^6]/[t_2^4 e^2] = \mu_{\rm eff}^2/(24 - \mu_{\rm eff}^2)$$
 (i)

$$\ln K_{\rm eq} = -\Delta H/RT + \Delta S/R \qquad (ii)$$

Figure 3. Calculated curve and experimental data for variation of magnetic susceptibility with temperature for $[Fe(sar)]^{2+}$ in CD₃CN based on a spin-only model for the $t_2^4e^2$ state.

The interpretation of the magnetism is reinforced by the unusual absorption spectrum of $[Fe\{(NH_3)_2-sar\}]^{4+}$ in D₂O (pH 4.5) (Figure 4), which displays a broad and weak band centred at ca. 11000 cm⁻¹ ascribed to the high-spin quintet transition of origin $({}^{5}T_{2g} \rightarrow {}^{5}E_{g})$ split by a dynamic Jahn-Teller distortion of the excited state.¹⁰ In addition, there are the expected strong absorptions for the low-spin isomer at 17 000 and 25 000 cm⁻¹ originating from the ${}^{1}A_{1} \rightarrow E$, A_{2} and ${}^{1}A_{1} \rightarrow E$ E, A₁ transitions in D_3 symmetry. Increasing the pH to 8.5 leads to deprotonation of the two NH₃⁺ groups and an increase in the population of the low-spin form $({}^{1}A_{1})$. In other solvents, the visible spectra are also temperature-dependent in a manner like that seen for the magnetism data.^{4,9a} The simultaneous observation of the spectra of both high- and low-spin forms of $[Fe\{(NH_3)_2-sar\}]^{4+}$ in solution clearly identifies the presence of both spin stereoisomers and the equilibrium condition. The temperature dependence of the visible spectrum of [Fe(sar)]²⁺, for example, in solution is also consistent with marked changes in the low-spin population. The high-spin component in this system is more difficult to observe because its population is small and its spectral intensity very weak.4,9a

The magnitude and sign of the energy separation ΔH deduced from the solution magnetism indicates that the ⁵A state lies *ca.* 1000 cm⁻¹ above the diamagnetic ¹A₁ state for [Fe(sar)]²⁺, [Fe{(NH₂)₂-sar}]²⁺, and [Fe{(CH₃)-sar}]²⁺.

[†] The expectation, in solution, is that the high-spin form (Fe-N~2.2 Å) will be roughly halfway between a trigonal prism and an octahedron for the ligating atoms whereas the low-spin isomer will be much closer to an octahedron (Fe-N~2.0 Å).

Figure 4. Variation of the visible absorption spectra with pH for $[Fe\{(NH_2)_2\text{-sar}\}]^{2+}$ in D₂O. At pH 8.5, the species in solution is $[Fe\{(NH_2)_2\text{-sar}\}]^{2+}$ (curve a) and at pH 4.5 it is $[Fe\{(NH_3)_2\text{-sar}\}]^{4+}$ (curve b). (The shoulder around 22 000 cm⁻¹ is due to a trace of di-imine complex arising from oxidation of $[Fe\{(NH_3)_2\text{-sar}\}]^{4+}$ by traces of O₂.)

However for $[Fe\{(NH_3)_2sar\}]^{4+}$ the two states are nearly equi-energetic (ΔH ca. 100 cm⁻¹) and the equilibrium is therefore relatively temperature-insensitive.^{4,9b} It can be seen from Figure 2 that although the choice of the spin-only or the spin-orbit coupled model affects the estimation of the equilibrium constant, it does not affect ΔH greatly. The χ and μ_{eff} data also fit either model equally well (e.g. Figure 3), except for [Fe{(NH₃)₂-sar}]⁴⁺ where the data fit the spin-only model much better than the spin-orbit coupled model. It is also likely that the spin-orbit coupling is reduced considerably in the lowered symmetry, and therefore, a spin-only model is the most valid representation for the high-spin isomer in solution. This is one of the few Fe^{II} thermal spin equilibrium systems for which d-d transitions can be observed. Usually, these ligand field bands have been obscured by charge-transfer bands associated with unsaturated ligands.¹¹⁻¹⁴ Moreover, it came as a surprise that the saturated amine ligands generate ligand fields which approach those in the unsaturated amine complexes. To a degree, this could arise from the strain induced in the ligand once bound to the metal ion.

Received, 4th May 1988; Com. 8/01750F

References

- 1 R. J. Geue, T. W. Hambley, J. M. Harrowfield, A. M. Sargeson, and M. R. Snow, J. Am. Chem. Soc., 1984, 105, 5478.
- 2 P. Comba, L. M. Engelhardt, J. M. Harrowfield, G. A. Lawrance, L. L. Martin, A. M. Sargeson, and A. H. White, J. Chem. Soc., Chem. Commun., 1985, 174.
- 3 P. Comba, I. I. Creaser, L. R. Gahan, J. M. Harrowfield, G. A. Lawrance, L. L. Martin, A. W. H. Mau, A. M. Sargeson, W. H. F. Sasse, and M. R. Snow, *Inorg. Chem.*, 1986, **25**, 384.
- 4 L. L. Martin, 'Magnetic and Electrochemical Studies of Some Encapsulated Metal Ions,' Ph.D. Thesis, The Australian National University, 1986, and references therein.
- 5 L. L. Martin, B. J. Kennedy, R. L. Martin, K. S. Murray, and A. M. Sargeson, publication pending.
- 6 R. L. Martin and A. H. White, Transition Met. Chem., 1968, 4, 113.
- 7 D. F. Evans, J. Chem. Soc., 1959, 2003.
- 8 P. Comba, L. M. Engelhardt, J. Harrowfield, E. Horn, A. M. Sargeson, and M. R. Snow, *Inorg. Chem.*, 1985, 24, 2325.
- 9 (a) L. L. Martin, A. Hauser, R. L. Martin, and A. M. Sargeson, publication pending; (b) L. L. Martin, K. S. Hagen, R. L. Martin, and A. M. Sargeson, publication pending.
- 10 F. A. Cotton and M. D. Meyers, J. Am. Chem. Soc., 1960, 82, 5023.
- 11 L. J. Wilson, D. Georges, and M. A. Hoselton, *Inorg. Chem.*, 1975, 14, 2968.
- 12 E. Konig and K. Madeja, Inorg. Chem., 1967, 6, 48.
- 13 P. Gütlich, Struct. Bonding (Berlin), 1981, 44, 83.
- 14 H. Toftlund, 'Spin ligevaegt i jern(II) Komplekser,' ISBN 87-9825 55-1-7, Trykt hos mammen, Odense, 1987.